Problem
Consider all integer combinations of $a^b$ for $2 \leq a \leq 5$ and $2 \leq b \leq 5$:
$$\begin{aligned}
& 2^2 = 4\text{, } 2^3 = 8\text{, } 2^4 = 16\text{, } 2^5 = 32 \
& 3^2 = 9\text{, } 3^3 = 27\text{, } 3^4 = 81\text{, } 3^5 = 243 \
& 4^2 = 16\text{, } 4^3 = 64\text{, } 4^4 = 256\text{, } 4^5 = 1024 \
& 5^2 = 25\text{, } 5^3 = 125\text{, } 5^4 = 625\text{, } 5^5 = 3125
\end{aligned}$$
If they are then placed in numerical order, with any repeats removed, we
get the following sequence of 15 distinct terms:
$$4\text{, } 8\text{, } 9\text{, } 16\text{, } 25\text{, } 27\text{, } 32\text{, } 64\text{, } 81\text{, } 125\text{, } 243\text{, } 256\text{, } 625\text{, } 1024\text{, } 3125$$
How many distinct terms are in the sequence generated by $a^b$ for
$2 \leq a \leq 100$ and $2 \leq b \leq 100$?